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The crystal structure of the title compound, �-PbTeO3 (PTO),

has been reported previously by Mariolacos [Anz. Oesterr.

Akad. Wiss. Math. Naturwiss. Kl. (1969), 106, 128–130], refined

on powder data. The current determination at room

temperature from data obtained from single crystals grown

by the Czochralski method shows a significant improvement in

the precision of the geometric parameters when all atoms have

been refined anisotropically. The selection of a centrosym-

metric (C2/c) structure model was confirmed by the second

harmonic generation test. The asymmetric unit contains three

formula units. The structure of PTO is built up of three types

of distorted [PbOx] polyhedra (x = 7 and 9) which share their

O atoms with TeO3 pyramidal units. These main anionic

polyhedra are responsible for establishing the two types of

tunnel required for the stereochemical activity of the lone

pairs of the Pb2+ and Te4+ cations.

Related literature

Single crystals of PTO were grown by the Czochralski tech-

nique (Kosse, Politova, Bush et al., 1983). For the temperature

dependence of the physical properties of PTO, see: Kosse,

Politova, Astafiev et al. (1983). For the polymorphism of PTO,

see: Tananaeva et al. (1977), Robertson et al. (1976), Young

(1979). Several different polymorphs were previously

described as monoclinic (Mariolacos, 1969), triclinic (Williams,

1979), orthorhombic (Spiridonov & Tananaeva, 1982), tetra-

gonal (Sciau et al., 1986) and cubic (Gaitan et al., 1987). For

related literature, see: Brown (1974); Galy et al. (1975);

Gillespie (1972); Tananaeva & Novoselova (1977).

Experimental

Crystal data

PbTeO3

Mr = 382.79
Monoclinic, C2=c
a = 26.555 (5) Å

b = 4.593 (1) Å
c = 17.958 (4) Å
� = 106.97 (3)�

V = 2094.9 (7) Å3

Z = 24

Mo K� radiation
� = 56.32 mm�1

T = 295 (2) K
0.14 � 0.04 � 0.02 mm

Data collection

Enraf–Nonius CAD-4
diffractometer

Absorption correction: refined from
�F
(Walker & Stuart, 1983)
Tmin = 0.234, Tmax = 0.695
(expected range = 0.109–0.324)

3717 measured reflections
3608 independent reflections
1676 reflections with I > 2�(I)
Rint = 0.054
3 standard reflections

frequency: 60 min
intensity decay: none

Refinement

R[F 2 > 2�(F 2)] = 0.026
wR(F 2) = 0.063
S = 0.77
3608 reflections

137 parameters
��max = 2.31 e Å�3

��min = �2.06 e Å�3

Data collection: CAD-4-PC (Enraf–Nonius, 1993); cell refinement:

CAD-4-PC; data reduction: CAD-4-PC; program(s) used to solve

structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine

structure: SHELXL97 (Sheldrick, 2008); molecular graphics:

DIAMOND (Brandenburg, 2005); software used to prepare material

for publication: CIFTAB97 (Sheldrick, 2008).

The authors thank Dr E. D. Politova for the single-crystal

preparation and Dr S. Yu. Stefanovich for the SHG

measurements. This research was supported by the Russian

Foundation for Basic Research (grant No. 06–03–32449).

Supplementary data and figures for this paper are available from the
IUCr electronic archives (Reference: FI2057).
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Comment

Crystals with the Pb2+ and Te4+ cations having stereochemically active lone-pairs are very attractive materials for ferroelec-
tric and non-linear optical applications. The knowledge of the crystal structures of these compounds should provide import-
ant information about the unusual mechanism of formation of their polar properties. The investigation of the PbO-TeO2 sys-

tem (Robertson et al., 1976; Young, 1979) has provided evidence of a large number of different phases. The polymorphism,
crystal structure and thermodynamic status of PbTeO3 (PTO) are not fully established and literature reports give conflicting

statements (Tananaeva et al.,1977; Robertson et al.,1976; Young, 1979). Several different polymorphs have previously been
described: monoclinic (Mariolacos, 1969), triclinic (Williams, 1979), tetragonal (Sciau et al., 1986) and cubic (Gaitan et
al.,1987). It should be mentioned that Spiridonov & Tananaeva (1982) described α-PbTeO3 as orthorhombic. The tetragonal

phase was shown to be ferroelectric. The phase change from the tetragonal to the monoclinic form at 783 K has been shown
to be irreversible (Young, 1979). The present paper deals with the crystal structure determination of α-PTO. This structure

can be described in terms of complex irregular Pb2+ polyhedra with 7 and 9 apices and separate Te4+O3 groups (Fig. 1,2).

Three kinds of Pb—O distances can be distinguished: three short contacts (2.25–2.53 Å), three longer distances (2.63–2.96
Å) and three abnormally long distances (3.02–3.26 Å). The different Pb polyhedra are connected by face, edge and corner

sharing through the Pb—O bonds forming the network with the honeycomb-like chains parallel to c axis. The Te4+ cations
coordinate to three O atoms in a one-sided pyramidal coordination TeO3E (E are lone-pair electrons). The Te—O distances

are in the range 1.85–1.90 Å. The O—Te—O angles are close to 100°. The next-nearest anions are located at distances
greater than 2.7 Å. In accordance with Brown (1974) these additional weak contacts are important for the determination

of the correct coordination geometry of the Te cations. Depending on the type of Te4+O3 E units, two types of tunnels are

formed running along [010], which represent the required space for the electron lone pairs within the structure. According
to Gillespie (1972), Galy et al. (1975) the electronic lone pair E is sitting inside these non-bonding regions.

Experimental

Single crystals of PTO were grown by the Czochralski technique as described earlier (Kosse, Politova, Bush et al., 1983;
Kosse, Politova, Astafiev et al., 1983). The chemical composition of tested crystals was confirmed with energy-dispersive
spectrometry analysis (LINK AN10000). Second harmonic generation (SHG) measurements showed no positive signals at
room temperature which is in accordance with the given space group.

Refinement

The structure of PTO was solved by the direct method in space group C2/c where the atomic coordinates of all Pb and Te
cations were found. The oxygen atoms were localized by difference Fourier maps.

http://dx.doi.org/10.1107/S1600536808003267
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Zavodnik,%20V.E.
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Ivanov,%20S.A.
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Stash,%20A.I.
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The very high absorption coefficient (µ=56.32 mm-1) and imperfect shape of crystal are the reason why the program
DIFABS (Walker & Stuart, 1983) was used for absorption correction.

The highest residual electron density peak (2.31 e A-3) is located 1.00Å from atom Pb1 and the deepest hole

(-2.06 e A-3) is located 1.46Å from atom O4.

Figures

Fig. 1. Polyhedral representation of the structure of α-PbTeO3.

Fig. 2. Coordination polyhedra of the different Pb cations. Displacement ellipsoids are drawn
at the 50% probability level. The labeling scheme for symmetry-related atoms is the follow-
ing: (i) 0.5 - x,1/2 + y,1.5 - z˛ (ii) x,1 + y,z˛ (iii) -x,-y,1 - z˛ (iv) 0.5 - x,-1/2 + y,1.5 - z˛ (v) x,-1
- y,1/2 + z˛ (vi) x,-y,1/2 + z.

α-lead tellurite

Crystal data

PbTeO3 F000 = 3792

Mr = 382.79 Dx = 7.282 Mg m−3

Monoclinic, C2/c Mo Kα radiation
λ = 0.71073 Å

Hall symbol: -C 2yc Cell parameters from 24 reflections
a = 26.555 (5) Å θ = 12.1–14.5º
b = 4.593 (1) Å µ = 56.32 mm−1

c = 17.958 (4) Å T = 295 (2) K
β = 106.97 (3)º Needle, colourless

V = 2094.9 (7) Å3 0.14 × 0.04 × 0.02 mm
Z = 24

Data collection

Enraf–Nonius CAD-4
diffractometer

Rint = 0.054

Radiation source: fine-focus sealed tube θmax = 32.0º

Monochromator: β-filter θmin = 1.6º
T = 293(2) K h = −39→37
ω/2θ scans k = −6→0
Absorption correction: part of the refinement model
(ΔF)
(Walker & Stuart, 1983)

l = 0→26

Tmin = 0.234, Tmax = 0.695 3 standard reflections
3717 measured reflections every 60 min
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3608 independent reflections intensity decay: none
1676 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map

Least-squares matrix: full
  w = 1/[σ2(Fo

2) + (0.0301P)2]
where P = (Fo

2 + 2Fc
2)/3

R[F2 > 2σ(F2)] = 0.026 (Δ/σ)max = 0.001

wR(F2) = 0.063 Δρmax = 2.31 e Å−3

S = 0.77 Δρmin = −2.06 e Å−3

3608 reflections
Extinction correction: SHELXL97 (Sheldrick, 2008),
Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

137 parameters Extinction coefficient: 0.000052 (5)
Primary atom site location: structure-invariant direct
methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance mat-
rix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations
between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of
cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, convention-

al R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-

factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Pb1 0.183652 (15) 0.21366 (10) 0.73592 (2) 0.01749 (9)
Pb2 0.066493 (14) 0.22395 (12) 0.54345 (2) 0.01847 (9)
Pb3 0.162024 (14) −0.24695 (10) 0.913902 (19) 0.01916 (9)
Te1 0.04734 (2) −0.23056 (15) 0.36782 (3) 0.01331 (11)
Te2 0.06941 (2) −0.25178 (16) 0.70793 (3) 0.01367 (11)
Te3 0.20758 (3) −0.30201 (15) 0.59262 (4) 0.01439 (13)
O1 0.0204 (3) −0.179 (2) 0.4532 (4) 0.0240 (17)
O2 0.1172 (3) −0.156 (2) 0.4259 (5) 0.0285 (19)
O3 0.0559 (4) −0.6348 (18) 0.3703 (6) 0.034 (2)
O4 0.1359 (3) −0.221 (2) 0.7823 (4) 0.0201 (15)
O5 0.0952 (4) −0.1694 (19) 0.6233 (4) 0.028 (2)
O6 0.0659 (4) −0.6528 (17) 0.6935 (6) 0.035 (2)
O7 0.2214 (3) −0.2120 (18) 0.6999 (4) 0.0180 (14)
O8 0.1858 (4) −0.683 (2) 0.6000 (5) 0.033 (2)
O9 0.2781 (3) −0.355 (2) 0.6016 (6) 0.034 (2)
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Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Pb1 0.01503 (16) 0.0168 (2) 0.02066 (16) 0.00061 (16) 0.00526 (13) −0.00209 (16)
Pb2 0.01480 (15) 0.0215 (2) 0.01935 (15) 0.00049 (18) 0.00528 (12) 0.00186 (17)
Pb3 0.02372 (17) 0.02011 (19) 0.01346 (14) 0.00414 (19) 0.00511 (12) 0.00129 (16)
Te1 0.0161 (2) 0.0109 (3) 0.0145 (2) 0.0019 (3) 0.00698 (19) −0.0003 (2)
Te2 0.0136 (2) 0.0106 (3) 0.0157 (2) −0.0002 (3) 0.00254 (19) −0.0021 (3)
Te3 0.0163 (3) 0.0122 (3) 0.0137 (2) 0.0009 (2) 0.0029 (2) 0.0001 (2)
O1 0.022 (4) 0.035 (5) 0.016 (3) −0.007 (4) 0.008 (3) −0.003 (3)
O2 0.013 (3) 0.032 (5) 0.037 (4) 0.005 (3) 0.002 (3) 0.007 (4)
O3 0.056 (7) 0.007 (4) 0.040 (5) 0.010 (4) 0.014 (5) −0.002 (3)
O4 0.017 (3) 0.030 (4) 0.014 (3) −0.013 (4) 0.006 (2) −0.004 (3)
O5 0.050 (6) 0.022 (4) 0.014 (3) 0.015 (4) 0.012 (4) 0.010 (3)
O6 0.044 (6) 0.005 (3) 0.057 (6) −0.004 (4) 0.019 (5) −0.012 (4)
O7 0.020 (3) 0.014 (3) 0.020 (3) 0.006 (3) 0.007 (3) 0.006 (3)
O8 0.053 (6) 0.021 (4) 0.024 (4) −0.016 (4) 0.013 (4) 0.000 (3)
O9 0.013 (3) 0.052 (6) 0.039 (5) 0.014 (4) 0.010 (3) 0.000 (4)

Geometric parameters (Å, °)

Pb1—O7 2.371 (8) Pb3—O3v 2.750 (11)

Pb1—O7i 2.471 (7) Te1—O3 1.870 (8)

Pb1—O8ii 2.504 (8) Te1—O2 1.876 (9)
Pb1—O4 2.628 (8) Te1—O1 1.888 (7)
Pb2—O5 2.294 (8) Te2—O6 1.859 (8)

Pb2—O1iii 2.334 (8) Te2—O5 1.878 (8)
Pb2—O1 2.528 (9) Te2—O4 1.883 (7)

Pb2—O6ii 2.758 (10) Te3—O9 1.848 (8)

Pb3—O2iv 2.246 (9) Te3—O8 1.858 (9)
Pb3—O4 2.263 (6) Te3—O7 1.899 (7)

Pb3—O9i 2.471 (9)

O7—Pb1—O7i 77.64 (19) O6—Te2—O5 95.9 (4)

O7—Pb1—O8ii 76.1 (3) O6—Te2—O4 99.8 (5)

O7i—Pb1—O8ii 96.7 (3) O5—Te2—O4 94.1 (4)
O7—Pb1—O4 75.0 (2) O9—Te3—O8 101.4 (5)

O7i—Pb1—O4 118.6 (2) O9—Te3—O7 92.8 (4)

O8ii—Pb1—O4 127.2 (3) O8—Te3—O7 96.0 (4)

O5—Pb2—O1iii 93.7 (3) Te1—O1—Pb2iii 128.4 (4)
O5—Pb2—O1 80.5 (3) Te1—O1—Pb2 112.6 (4)

O1iii—Pb2—O1 69.8 (3) Pb2iii—O1—Pb2 110.2 (3)

O5—Pb2—O6ii 69.3 (3) Te1—O2—Pb3vi 124.2 (4)

O1iii—Pb2—O6ii 72.9 (3) Te1—O3—Pb3vii 108.1 (5)

O1—Pb2—O6ii 129.5 (3) Te2—O4—Pb3 132.5 (3)



supplementary materials

sup-5

O2iv—Pb3—O4 92.7 (3) Te2—O4—Pb1 105.7 (3)

O2iv—Pb3—O9i 77.7 (3) Pb3—O4—Pb1 110.0 (3)

O4—Pb3—O9i 81.7 (3) Te2—O5—Pb2 122.1 (4)

O2iv—Pb3—O3v 70.3 (3) Te2—O6—Pb2viii 109.0 (4)

O4—Pb3—O3v 74.8 (3) Te3—O7—Pb1 119.0 (3)

O9i—Pb3—O3v 138.7 (3) Te3—O7—Pb1ix 108.2 (3)

O3—Te1—O2 94.2 (4) Pb1—O7—Pb1ix 116.2 (3)

O3—Te1—O1 100.2 (4) Te3—O8—Pb1viii 110.2 (4)

O2—Te1—O1 94.2 (4) Te3—O9—Pb3ix 139.0 (6)
Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) x, y+1, z; (iii) −x, −y, −z+1; (iv) x, −y, z+1/2; (v) x, −y−1, z+1/2; (vi) x, −y, z−1/2; (vii)
x, −y−1, z−1/2; (viii) x, y−1, z; (ix) −x+1/2, y−1/2, −z+3/2.
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Fig. 1
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Fig. 2


